A mixed three-eld FE formulation for stress accurate analysis including the incompressible limit
نویسندگان
چکیده
In previous works, the authors have presented the stabilized mixed displacement/pressure formulation to deal with the incompressibility constraint. More recently, the authors have derived stable mixed stress/displ-acement formulations using linear/linear interpolations to enhance stress accuracy in both linear and non-linear problems. In both cases, the Variational Multi Scale (VMS) stabilization technique and, in particular, the Orthogonal Subgrid Scale (OSS) method allows the use of linear/linear interpolations for triangular and tetrahedral elements bypassing the strictness of the Inf-Sup condition on the choice of the interpolation spaces. These stabilization procedures lead to discrete problems which are fully stable, free of volumetric locking or stress oscillations. This work exploits the concept of mixed nite element methods to formulate stable displacement/stress/pressure nite elements aimed for the solution of nonlinear problems for both solid and uid nite element (FE) analyses. The nal goal is to design a nite element technology able to tackle simultaneously problems which may involve isochoric behaviour (preserve the original volume) of the strain eld together with high degree of accuracy of the stress eld. These two features are crucial in nonlinear solid and uid mechanics, as used in most numerical simulations of industrial manufacturing processes. Numerical benchmarks show that the results obtained compare very favourably with those obtained with the corresponding mixed displacement/pressure formulation.
منابع مشابه
Mixed Stabilized Finite Element Methods in Nonlinear Solid Mechanics. Part III: Compressible and incompressible plasticity
This paper presents the application of a stabilized mixed strain/displacement nite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the stan...
متن کاملConvergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation
The classical Hu-Washizu mixed formulation for plane problems in elasticity is examined afresh, with the emphasis on behavior in the incompressible limit. The classical continuous problem is embedded in a family of Hu-Washizu problems parametrized by a scalar α for which α = λ/μ corresponds to the classical formulation, with λ and μ being the Lamé parameters. Uniform well-posedness in the incom...
متن کاملA monolithic fluid-structure interaction formulation for solid and liquid membranes including free-surface contact
A unified fluid-structure interaction (FSI) formulation is presented for solid, liquid and mixed membranes. Nonlinear finite elements (FE) and the generalized-α scheme are used for the spatial and temporal discretization. The membrane discretization is based on curvilinear surface elements that can describe large deformations and rotations, and also provide a straightforward description for con...
متن کاملExplicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity
This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales (VMS). A displacement sub-scale is ...
متن کاملOn finite element formulations for nearly incompressible linear elasticity
In this paper we present a mixed stabilized finite element formulation that does not lock and also does not exhibit unphysical oscillations near the incompressible limit. The new mixed formulation is based on a multiscale variational principle and is presented in two different forms. In the first form the displacement field is decomposed into two scales, coarse-scale and fine-scale, and the fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014